

DISCLOSURE STATEMENT

I have no financial conflicts of interest to disclose

I will not be discussing offlabel medication use OBJECTIVES

OBJECTIVES

At the end of this presentation the learner will be able to:

1) Discuss basic physiology associated with normal lung function.

2) Discuss physiological effects of mechanical ventilation.

3) Understand the physical basis of mechanical ventilation.

4) Discuss specific settings associated with the various ventilation modes.

5) Identify the different ventilation modes best for specific settings.

DISCLOSURE STATEMENT

I have no financial conflicts of interest to disclose

I will not be discussing offlabel medication use **OBJECTIVES**

ANESTHESIA

VENTS

Existed since Biblical times

Negative pressure ventilation in 1800s

Positive pressure ventilation in 1900s

Today's ventilator in 1940s

Generation	Years	Distinguishing Factors
First	Early 1900s – Mid 1970s	Only volume-controlled ventilation
Second	Mid 1970s – Early 1980s	First appearance of patient-triggered inspiration
Third	Early 1980s – Late 1990s	Microprocessor control
Fourth	Late 1990s - Present	Plethora of ventilation modes
Future	TBD	Smart ventilation w/decision support

HISTORY

Existed since Biblical times

ANESTHESIA

VENTS

Negative pressure ventilation in 1800s

Positive pressure ventilation in 1900s

Today's ventilator in 1940s

Generation	Years	Distinguishing Factors
First	Early 1900s – Mid 1970s	Only volume-controlled ventilation
Second	Mid 1970s – Early 1980s	First appearance of patient-triggered inspiration
Third	Early 1980s – Late 1990s	Microprocessor control
Fourth	Late 1990s - Present	Plethora of ventilation modes
Future	TBD	Smart ventilation w/decision support

PHASE VARIABLES

4 phases:

- 1) Change from expiration to inspiration
- 2) Inspiration
- 3) Change from inspiration to expiration
- 4) Expiration

Variables measured

Pressure Volume Flow Time

TRIGGER VARIABLE (Initiates inspiration)

Time

Breath initiated according to set frequency independent of patient effort

Pressure

Drop in baseline pressure sensed with patient effort and breath given independent of set frequency

Flow/Volume Inspiratory effort sensed by flow or volume

into the lungs

CYCLE VARIABLE

(Used to end inspiration)

Preset value reached

Pressure Preset pressure is reached

Volume Preset volume flows through ventilator valve

Flow Delivers flow until preset level is reached (PSV)

Time Preset inspiratory time cycle as elapsed

Considerations

Comorbidities + Anesthesia Type + Positioning + Procedure + Pharmacology

TERMS

VOLUME CONTROLLED VENTILATION (VCV)

Key Points

- Volume Limited
- Time Cycled
- Constant Flow

Women: Ideal body weight in pounds = $100 + 5 \times$ (height, in - 60) *Men*: Ideal body weight in pounds = $110 + 5 \times$ (height, in - 60)

VOLUME CONTROLLED VENTILATION

Obstruction, Leak, and Secretions

PRESSURE CONTROLLED VENTILATION (PCV)

Key Points

- Pressure Limited
- Time Cycled
- Decelerating Flow Pattern

SYNCHRONIZED INTERMITTENT MANDATORY VENTILATION (SIMV)

- Spontaneous breathing between mandatory machine cycled breaths supported
- Mandatory breaths VCV or PCV
- Spontaneous breaths supported by pressure support (PS)
- Support can be flow triggered or pressure triggered

Trigger Window

• Amount of time during expiratory cycle that ventilator is sensitive to negative pressure generated by diaphragm

Sensitivity

 How much negative pressure patient needs to produce before a support is triggered

PRESSURE-CONTROLLED VOLUME-GUARANTEED (PCVG)

PRESSURE SUPPORT VENTILATION - PRO (PSV PRO)

- Pressure targeted ventilation
- Responsive to patient's effort
- Augment patient's spontaneous respiration
- Backup mode for apnea (PROtect)
- Weaning, preventing atelectasis, or LMA
- Caution with changing trigger window and sensitivity

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)

- Noninvasive ventilation
- Helps maintain patent airway
- Active in both inspiratory AND expiratory phase
- Improves oxygenation AND ventilation
- Gold standard treatment for OSA
- Help avoid loss of FRC before extubation

I:E RATIO

Normal I:E is 1:2

Higher I:E

- beneficial in conditions where it is difficult for air to leave the lungs (*i.e. asthma, COPD*)

Shorter I:E

- used with patients difficult to ventilate
- monitor for gas trapping

Inverse I:E

- increases mean airway pressures and can improve oxygenation, gas exchange, and arterial oxygenation -increased intrathoracic pressure and decreased cardiac output

RICHARD WILSON, DNAP, CRNA, FAANA

DISCLOSURE/

OBJECTIVES

REFERENCES

Barash, P. G., Cullen, B. F., Stoelting, R. K., Cahalan, M., & Stock, M. C. (2017). *Clinical Anesthesia* (8th ed.). Philadelphia, PA: Lippincott Williams & Wilkins. (In USC SOM Medical Library Online Resources)

Naglehout, John, Elisha, Sass, & Heiner, Jeremy (2022). *Nurse Anesthesia*, 7th ed. Elsevier Saunders, 2022.

Tobin, Martin J. (2013). Principles and Practice of Mechanical Ventilation, 3rd ed. McGraw Hill Medical.

Benoît, Zilgia MD*,; Wicky, Stephan MD†,; Fischer, Jean-François MD‡,; Frascarolo, Philippe PhD*,; Chapuis, Carine MD*,; Spahn, Donat R. MD*,; Magnusson, Lennart MD, PhD*. The Effect of Increased Fio2 Before Tracheal Extubation on Postoperative Atelectasis. Anesthesia & Analgesia 95(6):p 1777-1781, December 2002. | DOI: 10.1097/00000539-200212000-00058

